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Abstract :  

The model used, GAMEDE, is a “whole-farm” dynamic model composed of 6 biophysical modules 
and a management system (Vayssières et al, 2009). This simulation model gives accurate predictions 
for various sustainability indicators (labor, energy consumption, production, nitrogen leaks to the 
environment…) to characterize observed or hypothetical farms. As GAMEDE is based on a stock-flow 
approach, we can monitor the farm stocks (slurry, fodders…) over time. GAMEDE also gives a full 
description of management operations of the production system. The GAMEDE model is randomly 
parameterized with the objective to cover the realm of the possible production systems by simulation. 
Key issues of the methodology are selecting input parameters and defining lower and upper bounds 
to these parameters. Expert knowledge is very useful to define these bounds. Even though the 
simulation approach constitutes a relevant tool for describing the production system, it can not provide 
a full efficiency analysis taking into account multiple input parameters. We suggest combining 
GAMEDE with “Data Envelopment Analysis” (DEA) to assess the efficiency of a large variety of 
simulated farms (frontier efficiency analysis). Each farm is characterized by different structural and 
management inputs parameters, inflows and sustainability indicators (including outflows). The last two 
types of variables are respectively inputs and outputs used in the DEA model. For inefficient farms, 
potential efficiency progress is calculated as the distance between these farms and the frontier. The 
main advantage of our methodology is to benefit of the synergy between simulation and efficiency 
frontier  modelling, as drawback of each method are balanced by the asset of the other method. 
 
1 Introduction  

Agricultural systems research has known major improvement thanks to biophysical models. Many 
models precisely describe the feed/nutrient needs of animals/plants and corresponding productions 
(e.g. for animals: INRATION; INRA, 2003; e.g. for plants STICS; Brisson et al., 2003). These models 
give an accurate description of biophysical mechanisms involved in food production, but they fail to 
describe the functioning of farming systems because they didn’t take into account the farmer’s 
objective and the constraints farmers face (Sebillote, 1987). Thus, Vayssières et al. (2009a) insist on 
the necessity to model explicitly the interaction between human activities and biophysical processes 
to be able to represent realistically farming systems. Additionally, the authors emphasize the limit of 
models at herd or plot scale and explain that only whole-farm models can assess the impact of a 
modification (technical or management) on the agricultural production system. GAMEDE is a whole-
farm dynamic model. The model has been implemented as a stock-flow model (Vensim® software) to 
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simulate dairy farming systems in La Réunion Island (French overseas department in the Indian 
Ocean). The model allows to simulate the impact of diverse technical changes and corresponding 
changes in decision rules on labor, energy consumption, production, nitrogen losses, etc (Vayssières 
et al., 2009b). Although the accuracy of the GAMEDE model was demonstrated, the simulation 
approach was limited to the exploration of technical and management changes proposed by technical 
advisers and farmers. It failed i) to represent the whole realm of feasible farming systems, and ii) to 
locate the observed and simulated farming systems in this realm of the possible. 
 
Our methodology suggests combining farm simulation with efficiency frontier methods. In this paper, 
we illustrate this methodology; we use the data envelopment analysis method to assess the efficiency 
of data sets generated by GAMEDE. DEA method allows us to identify the efficient, and to define the 
level of inefficiency of every farm deemed as inefficient. It requires defining a technology producing 
outputs with inputs. The input-output sets are generated with GAMEDE. The major asset of our 
methodology is to link the efficiency scores with these parameters which are often unknown in 
classical efficiency analysis of farming systems (Vayssières et al, 2007). Actually, the choice of inputs 
and outputs is very restrictive in DEA (closely linked to sample size) and interpretation of efficiency 
score is generally limited. Furthermore, DEA method needs to implement large data sets, to define 
robust efficiency  frontiers and this is very scarcely the case for faming systems.  
 
While optimization and simulation method are often opposed, Jacoby and Loucks (1972) already 
suggested in 1972 that combination of this two modeling methods may offer a promising assessment 
approach. In our study case, we analyze whether the combination of the two methods improve both 
methods with a double hypothesis. Firstly, the frontier efficiency method (based on optimization 
mathematics) improves the efficiency assessment of the simulation model by a multidimensional 
(multi-inputs and multi-outputs) analysis and the quantification of the progress margins. Conversely, 
simulation models as GAMEDE can generate important data sets for optimization method, with the 
certification that simulated data are coherent in a given agronomic context. In our case study, the 
objective is not to improve GAMEDE but to progress in farming systems efficiency analysis. We will 
first introduce both modeling methods (GAMEDE and DEA), then present our results on the case 
study of dairy farming systems in La Réunion Island. Lastly, the discussion part raises the assets and 
limits of the proposed methodology. Some methodological improvements are proposed. 
 
2 Methodology 

Our method suggests combining simulation modelling and DEA for analyzing efficiency (figure 1). The 
first part of this methodology description presents the structure of GAMEDE and clarify the various 
type of data used, while second part briefly describes the data generation process. Lastly, we 
introduce DEA and the specificity of the linear program used to build the efficiency frontier of dairy 
farms in La Réunion. The efficiency analysis presented in the lower part of figure 1 will finalize our 
global efficiency analysis in part 3. 
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of fresh matter: kgFM) are translated into labour (in hours), Nitrogen flows (in kgN), Energy flows (in 
MJ) and cash flows (in €). Finally, flows are synthesised in sustainability indicators. 
 

2.1.3 GAMEDE outputs  

GAMEDE assess the sustainability of the simulated dairy farming systems according to technical, 
environmental, social and economic indicators. 
 
The technical indicators concern production of forage, milk and meat production. Forage production is 
the total feed energy harvested by ensiling, cutting and carrying, or direct grazing of forage, on the 
total utilised agricultural area (in UF year-1). UF is the feed unit defined by the french UF/PDI feeding 
unit system (Jarrige, 1989) characterising the energy value of a considered feed to allow milk 
production or weight gain.. Milk and meat productions are expressed in kilogramme of fresh matter 
(kgFM year-1). 
 
The environmental indicators are focused on N dynamics, non-renewable energy (NRE) 
consumptions and green house gas (GHG) emissions. The model calculates annual N leaks to the 
environment and apparent N farm gate balance (Simon and Le Corre, 1992; Nevens et al., 2006). 
Energy consumptions (in MJ year-1) and GHG emissions (in kgC02eq. year-1) considers both direct 
and indirect NRE consumptions and GEG emissions along the life cycle “from the cradle to the farm-
gate" (Bochu, 2007). 
 
The social indicator is the total labour requirement. It is expressed in hours per week to allow 
comparisons with the statutory working week. Hours of labour are linked to each technical operation 
to represent direct influence of practice on labour requirement. 
 
The economic indicator is gross margin (in € year-1). This indicator is appropriate for analysing 
contributions of activities to farm economic viability (De Jager et al., 2001). As the hours of labour are 
linked to each technical operation, the costs and benefits of each operation are calculated according 
to management practices and finally summed over time and operations in the annual gross margin. 
 

2.2 Dataset building: the link between the simulation and the optimization models 

Variable nomenclature may be confusing because some outputs of the GAMEDE model are used as 
inputs in the DEA model. Figure 2 summarizes variables used in GAMEDE and DEA to clarify the 
vocabulary used in this paper. 
 
Before each GAMEDE simulation, some variables (≠ constants) have to be fixed, they are called 
“input parameters” (defined in § 2.1.). Some of them were selected to be “Explaining variables” in the 
multivariate analysis (§ 3.3.). They are called “Explaining variables” because they explain efficiency 
variations. Explaining variables are classified in two types: structural explaining variables (e.g. herd 
size, agricultural areas) and management explaining variables (e.g. quantity of concentrate feed 
distributed in the feed ration per cow per day…). The idea was to see if inefficiencies are equally 
explained by structural and management variables. 
 
Outputs indicators calculated by GAMEDE are used both as Inputs and Outputs variables for the DEA 
model. “Input variables” are farm consumptions (labor, concentrate, N under the form of mineral 
fertilizers). “Output variables” are farm productions (milk, meat).  
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( ){ }:  can produce O I O OT R +
+= ∈I Ix , y x y . By imposing basic axioms on the production technology 

(particularly free disposability of inputs and outputs, convexity and variable returns to scale) we add a 
mathematical structure that leads to measure the efficiency of each farm by the following linear 
program: 
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 on the right hand side is compared to a benchmark which is defined by 

a linear combination of the N DMUs that composed the sample on the left hand side. We expect that 
the benchmark (projection point of the DMU on the frontier) of the evaluated DMU produces more of 
each output (first set of constraints) while using less of each input (second set of constraints). We 
therefore seek the largest proportional increase of the output vector (h) of the evaluated DMU. After 
solving this model for each DMU in the sample, efficient DMUs will characterize the technology 
frontier. Inefficient DMUs are situated below the frontier and a measure of their inefficiency is given by 
the number (h-1), and can be interpreted as the potential increase in outputs. 
 
As the data set used to build the DEA model is based on simulations, there is a risk that some 
input/output combinations (= theoretical farms) are inconsistent in the context of La Reunion’s Island. 
In order to estimate the effect of these outliers on the efficiency score, we implement a method based 
on the outlier detection research of Thanassoulis et al. (2008) and Simar and Wilson (2008). As many 
methods in outliers detection, the principle used is to implement the DEA on sub-datasets. We 
implement many DEA models for each sub-dataset of the original dataset, i.e., without the certainty 
that all the efficient farms are taken into account. Thus, the maximum inefficiency score is observed 
when the farm is compared to the whole sample (with all the efficient farms) and according to the 
random selection of the sub-datasets, we will observe lower inefficiency scores as shown in figure 3. 
 
We can see in the left part of the figure 3 that in a model including all farms, the efficiency frontier is 
built by the farm A, B and C. In the right part, we can see that the exclusion of the farm B has reduced 
the production set and the inefficiency score. In this paper, we decided to fix the two key parameters 
of this method, the size of the sub-sample (m=75% of the whole sample) and the number of draws 
(b=100). We obtained one hundred scores for each farm and the average score could be compared to 
the model with the complete dataset. The difference between the two scores highlights the influence 
of the outliers and the reliability of the score observed in the first model.  
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words, the random choice of parameters in the data generation process in GAMEDE generate outliers 
but always very inefficient, and as a consequence doesn’t affect the structure of the efficiency frontier.  
 

3.2 Efficiency characterization (multivariate analysis and linear regression) 

Multiple discriminant analysis (MDA) is a common descriptive method based on parametrical models. 
The main goal of this statistic analysis is to characterize a data set by different classes and support an 
optimal graphic representation of the class diversity. Therefore, the method maximizes the inter-group 
variance while intra-group variance is minimized. In order to implement this method without the 
influence of the inefficient outliers (with score up to 1267), we focus this analysis on the efficiency 
score between 1 and 2. Five groups of farms are made in this efficiency score class: 

• 1 : Efficiency score : 1 (efficient farm) 
• 2 : 0 à 10% of potential improvement (score between 1 and 1.1) 
• 3 : 10 à 20% of potential improvement (score between 1.1 and 1.2) 
• 4 : 20 à 50% of potential improvement (score between 1.2 and 1.5) 
• 5 : 50 à 100% of potential improvement (score between 1.5 and 2) 

 
The multiple discriminant analysis allows characterizing this group according to farm structure and 
practices (GAMEDE inputs parameters). Indeed, this method allows us to define a whole set of 
parameter specific to each dataset of inputs/outputs.  
 
MDA emphasizes a gradient between the different groups. The lower score (efficient farms) are 
correlated to the important herd and high level of concentrate feed. Conversely, the higher score 
seems to be linked with large grassland surfaces, which need important use of fertilizers and labor for 
harvest activities. Indicators generated by GAMEDE point out a correlation between gross margin and 
the efficient farms. 
 
We made a linear regression of the efficiency score in order to see the most influential structural and 
management parameters in GAMEDE. We observe similar results as in the Multifactorial discriminant 
analysis. Herd size and quantities of concentrate feed used to feed cows are linked to the most 
efficient farms while grassland surfaces are typical to inefficient farms. 
 
Linear regression allows us to identify influential parameters on the efficiency score (concentrate 
feeds for dairy cows, herd size, grassland surfaces). Moreover, linear regression provides indicators 
which give an intuitive interpretation of the influential parameters. For example, linear regression 
demonstrate that an increase of herd from 80 to 110 induce a reduction of inefficiency score of 0.073. 
Similarly, if the farmer increase concentrate feeds from 8.5 to 13.5 (Kg.cow-1.day-1), he will reduce his 
inefficiency by 0.0141. 
 
4 Concluding remarks on the proposed methodology 

As figure 1 exposed it, our methodology of efficiency assessment benefits of both simulation and 
optimization modelling and drawback of each method are compensate by the asset of the other 
method. GAMEDE and Data Envelopment Analysis appear to be very complementary, as simulation 
farm models allows generating consistent farms datasets in a given agronomic context, and frontier 
efficiency methods allow identifying efficient farms and level of inefficiency of  non-efficient farms. 
 
Empirically, our application on the dairy farming systems in La Réunion highlights specificity of this 
insular livestock sector: a land limited and mountainous territory. Statistical analysis emphasizes that 
efficient farms own important herds and use significant quantities of concentrate feeds for cattle 
feeding. Moreover, parameters which appear to be negatively linked to efficiency are all relative to 
grassland management. In Réunion’s island, dairy farms are essentially located in the upper part of 
the island, as low littoral lands are reserved to sugar cane. Thus, lands available for dairy production 
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are generally steep and pebbly. In these conditions, forage production is costly and appears inefficient 
with reference to the concentrate feed option. Nevertheless, in this study, we only considered 
classical milk and meat production indicators (good outputs) and we can assume that characteristics 
of efficient farms would be very different if we would have integrated direct and indirect greenhouse 
gases emissions (GHG) in the frontier analysis (as a bad output). In fact, concentrate feed 
consumption is a strong contributor to indirect GHG emissions in the life cycle analysis (LCA) of dairy 
farms (Vayssières et al., 2010). New methods in efficiency frontier analysis allow considering 
undesirable outputs as GHG emissions or nitrogen leaks to the environment (Berre et al., 2011). 
 
The combination of simulation and optimization models to analyze the efficiency of farming systems is 
a new methodology. The main risk we identified in this methodology is the inconsistency of some 
simulated farming systems and then of the corresponding input-ouput points used in DEA. As the 
parameter selection is independent of the other parameter value, we understand that there is a risk 
that many simulated combinations may be not realistic, in particular if farm models are pure 
biophysical models. The fact that GAMEDE represents accurately the most influent biophysical and 
management processes on farming systems functioning and performances, guaranties the coherence 
of input-output datasets. For instance quantity of concentrate feeds consumed by cows on a daily 
basis are limited by intake capacity of animals (a biophysical rule) and quantity of concentrate feeds 
bought (an input) do not exceed needs defined by the feed ration (a management parameter). Despite 
the existence of a decision system, we have noted that the random selection of parameter value 
generated some outliers. As we demonstrated in part 3.1, we noted that outliers correspond to very 
inefficient farms and do not impact the efficiency frontier structure. The robustness of the model 
implemented confirms this assumption. This assumption has to be explored for datasets generated by 
pure biophysical farm models (e.g. Nuances-FarmSim, Van Vijk et al., 2009) where some efficient 
farms will probably be outliers. 
 
Finally, our methodology suggests a new way to analyze the efficiency of farming systems. Our three-
stage efficiency analysis methodology confirms that simulation models and efficiency frontiers are 
complementary. Simulation models built on deep knowledge of main biophysical and management 
processes involved in farm functioning allows to generate the large dataset needed to build robust 
efficiency frontiers. Conversely, frontier efficiency analysis complete the classical “what if?” approach 
largely associated to simulation models by a better representation of the realm of possible farming 
systems. This is a strong benefit of coupling the two methods. During data set generation, upper and 
lower bound fixed for each parameter of the simulation model is a key methodological point that have 
to be addressed carefully. The bounds are conditioning the consistency of the simulated farms in a 
given agricultural context and then the validity of the input/output data set and the corresponding 
frontier.  We recommend using local expert knowledge and observed ranges (in survey) to define 
these bounds. Regarding last prospective reports on the food sector (MEA, 2005; Chaumet et al., 
2009; FAO, 2011) and their recommendations to focus on efficiency to ensure food security with 
limited impact on the environment, we consider that the combination of farm simulation models and 
frontier efficiency analysis is a promising methodology.  
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