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Abstract: World food production must increase to meet greater future demand without exacer-
bating climate change and despite dwindling resources. More efficient dairy farm production is 
therefore essential if farms are to become- and remain- economically, socially and environmen-
tally sustainable. Data Envelopment Analysis has been increasingly used to measure dairy farm 
efficiency. However, all studies identified have used radial models that do not account for the 
farms’ slacks, i.e. overused resources for a given production level. This study used a slacks-based 
measure of efficiency (SBM) in order to identify relationships between the technical, environ-
mental and economic efficiencies of dairy farms by using data from a long-term genetic line × 
feeding systems experiment comprising of 4 distinct systems. The slacks allowed for the calcula-
tion of resource-specific efficiency patterns for each system. Results supported the assumption 
that technically efficient units were also environmentally efficient. Moreover, there was no clear 
relationship between economic and environmental efficiency. Notably, technically efficient units 
did not always manage to reduce their costs to the lowest possible level, compared with their 
peers. Therefore, there may be economic/environmental trade-offs between dairy farming sys-
tems i.e. a ‘win-win’ may not always be possible. Furthermore, resource-specific efficiency pat-
terns suggested that systems selected for increased milk fat + crude protein yield were better in 
minimizing their greenhouse gas emissions and nitrogen and phosphorus surpluses, compared to 
systems selected to remain close to the average UK genetic merit., Systems on high forage re-
quired a larger reduction in land use and fertilizer use than systems on low forage. A further step 
will be to test the hypothesis that the ‘best’ system is not necessarily the most efficient one, but 
the least variable one, i.e. further step will be to account for the experiment’s temporal nature. 

Keywords: farm experiment, contrasting systems, slacks-based DEA, efficiency, sustainability 
patterns, policy-making indicators 
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Introduction 
Milk is one of the major agricultural commodities produced in the European Union (EU) as it is 
produced in every single member state and represents 15% of total agricultural output in terms of 
value (European Commission, 2013). However, milk production is a contributor of greenhouse 
gas emissions (GHGs) and other pollutants (Toma et al., 2013), while the quality of the manage-
ment system can also impact on the productivity and welfare of dairy cows (Bowell et al., 2003 ; 
Kauppinen et al., 2013). Agriculture in the EU (and elsewhere in the developed world) aims for 
resource-use efficiency with policy increasingly focused on compliance with socio-economic and 
environmental sustainability standards and less on production controls. Wider definitions of effi-
cient dairy farm production are therefore essential if dairy farms are to be and seen to be sustain-
able from an economic, social and environmental viewpoint. 

In the present study, we adopted an efficiency-based framework to compare four contrasting 
dairy systems by using data from a long-term genetic line × feeding systems experiment. We cal-
culated the technical, environmental, economic, and resource-specific efficiencies with the use of 
a novel, slacks-based Data Envelopment Analysis (DEA) model. This model is superior to DEA 
models used in past dairy farm assessments (e.g.Hansson & Öhlmér, 2008 ; Toma et al., 2013), as 
the latter do not only ignore the substitutional nature of some of the dairy farms’ resources, but 
also do not account for any potential resource/undesirable output excesses or output shortfalls 
when evaluating efficiency. Therefore, the slacks-based models allowed for an in-depth examina-
tion of the four systems’ reasons for inefficiency. 

 
Methods 
 
Data Envelopment Analysis 
Data Envelopment Analysis (DEA) is a method for measuring the capacity of Decision Making 
Units (DMUs) to convert inputs into outputs [see Cooper et al. (2007)]. All DEA dairy studies 
identified in the literature have used radial models which have two well-known drawbacks. First, 
any input (output) reduction (improvement) is assumed to be equiproportional, i.e. they assume a 
given input (output) mix. Second, they do not account for the potential presence of input (output) 
excesses (shortfalls), i.e. slacks (Tone, 2001). 

Tone (2001) proposed a non-radial, slacks-based model; the so-called slacks-based measure of 
efficiency (SBM). Because SBM accounts for slacks in the calculation of efficiency, it has been 
mathematically proven that it discriminates better than radial models (Tone, 2001). In this study, 
SBM variants were used to calculate the technical (TE) and environmental efficiency (EE) of 
dairy farms. The SBM TE scores were then used for the calculation of the farms’ economic (cost) 
efficiencies (CE). The CE model used here is superior to the widely used Farrell-Debreu model 
(Hansson & Öhlmér, 2008) in that it does not assume identical input costs for each DMU (Cooper 
et al., 2007). 
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Suppose that there are ݊ DMUs each having ݉ inputs and ݏ outputs represented by two vectors 
࢞ א ࢟ ௠ andࡾ א ܺ ௦ respectively. Let us define the matricesࡾ ൌ ሾݔଵ, … , ௡ሿݔ א  ௠ൈ௡ andࡾ
ܻ ൌ ሾݕଵ, … , ௡ሿݕ א ܺ  ௦ൈ௡, withࡾ ൐ 0 and ܻ ൐ 0. The SBM model is the following fractional pro-
gramme: 

min
࢙ష,࢙శ,ࣅ

ߩ ൌ
1 െ 1

݉∑ ௜ିݏ ௜௢⁄௠ݔ
௜ୀଵ

1 ൅ 1
ݏ ∑ ௥ାݏ ௥௢⁄௦ݕ

௥ୀଵ

 

subject to 

࢞௢ ൌ ࣅܺ ൅ ࢙ି 
࢟௢ ൌ ࣅܻ െ ࢙ା 

࢙ି ൒ ૙, ࢙ା ൒ ૙, ࣅ ൒ ૙, 
 
where the vectors ࢙ି א ௠ and ࢙ାࡾ א  ௦ correspond to input excesses and output shortfallsࡾ
(slacks) respectively, ࣅ א ௡ is a nonnegative vector and ૙ࡾ א  ௡ is a vector of zeros. A linearࡾ
equivalent of SBM can be found in Tone (2001). Once the SBM has been solved, the optimal 
slacks ࢙ିכ, ࢙ାכ for DMUo can be used to examine variable-specific patterns, e.g. input savings 
potentials, by calculating the ratio of each slack over its corresponding input. SBM can be modi-
fied to an input-oriented model representing TE or to account for the minimization of undesirable 
outputs, representing EE [see Cooper et al. (2007)]. Unlike radial models, SBM for EE allows for 
the simultaneous minimization of inputs and undesirable outputs, and for the maximization of 
desirable outputs. Also, it considers undesirable outputs as such, rather than transforming them 
into debatable forms, such as considering them as inputs, inverse outputs, etc. (Scheel, 2001 ; 
Kuosmanen, 2005). In this study, the EE SBM model has been modified so as to consider desira-
ble outputs as fixed in line with current production limited approaches to resource-use efficiency 
in EU agriculture. Methodologies to modify SBM models in this way, including relaxation of this 
particular assumption so as to fit them for alternative purposes can be found in Cooper et al. 
(2007). 

After the TE scores have been calculated, the CE of DMUo is calculated by the ratio ܥ/ܥ௢, where 
௢ܥ ൌ ∑ ܿ௜௢ݔ௜௢௠

௜ୀଵ  ሺ݋ ൌ 1,… , ݊ሻ is the actual (observed) input cost for DMUo, and ܥ can be calcu-
lated by the following linear program: 

ܥ ൌ min
࢞ᇲ,ࣆ

 ᇱ࢞ࢋ

࢞ᇱ ൒ ܺᇱࣆ 

࢟௢ ൑  ࣆܻ

ࣆ ൒ ૙, 

where ܺᇱ ൌ ሺݔଵᇱ , … , ௡ᇱݔ ሻ א ௝ᇱݔ ,௠ൈ௡ࡾ ൌ ൫ݔ௜௝ᇱ , … , ௠௝ݔ
ᇱ ൯, ݔ௜௝ᇱ ൌ ܿ௜௝ݔ௜௝כ , ܿ௜௝ is the cost of input ݅ for 

DMUj, ௝࢞
represents the technically efficient input for producing ࢟௝, i.e. ௝࢞ כ

כ ൌ ௝࢞ െ ௝࢙
 is a ࢋ and כି

row vector with all elements being equal to 1. 

Data 
Data were obtained from Scotland’s Rural College (SRUC) 7-year genetic line × feeding Hol-
stein-Friesian dairy systems experiment (Pollott & Coffey, 2008). The so-called Langhill herd 
comprised of a select (S) line: sires selected for the highest fat + protein kg genetic merit at the 
time of artificial insemination (AI); and of a control (C) line: selected to have the average genetic 
merit for fat + protein kg at the time of AI. The herd was managed with one group kept indoors 
on a low forage (LF) diet and the other group on a high forage (HF) diet with summer grazing. 
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Thus, there were four distinct systems in the experiment, namely High Forage Control (HFC); 
High Forage Select (HFS); Low Forage Control (LFC); and Low Forage Select (LFS). The num-
ber of animals in each system was about 50 per year. In this study, as in Toma et al. (2013), each 
system was considered as a different DMU for each of the 7 years of the experiment, thus result-
ing in a total of (7 years) × (4 systems) = 28 DMUs.  

For the calculation of TE, EE and CE of the 28 DMUs, the following data were used. Inputs: re-
placements (numbers), labour (h), land use (ha), nitrogen (N) fertilizer (t N) and dry matter (DM) 
of feed (t DM); outputs: milk (t energy-corrected milk) and animals sold (numbers); undesirable 
outputs: greenhouse gas (GHG) emissions (t CO2 equivalents), N surplus (t) and phosphorous (P) 
surplus (t). All data except for labour were calculated by Toma et al. (2013) using data from the 
Langhill database. Regarding labour, data from DairyCo’s (2012) Milkbench+ report were used. 
The report provides labour data for three farm types, namely Cows at Grass, Composite and 
High-output Cows. In this study, labour data for Cows at Grass corresponded to HFC; Composite 
to LFC; High-output Cows to LFS; and the average of High-output Cows and Cows at Grass to 
HFS. Economic data (£/input) were obtained from the following sources: DairyCo’s website 
(http://www.dairyco.org.uk/); the Milkbench+ report (DairyCo, 2012); SAC Consulting, who 
publish an annual Farm Management Handbook (2010); and, where available, from Langhill’s 
own accounting data. In order to ensure consistency between data sources, data for the financial 
year 2010/11 (Apr 2010-Mar 2011) were used. 

 
Results 
All calculations and visualizations were run in the programming language R (R  Development 
Core Team, 2013). Appropriate statistics for the non-normally distributed efficiency scores TE, 
EE and CE were summarised in box plots (Figure 1). 

Figure 1: Box plots summarizing statistics for efficiency scores per system. TE: technical efficiency; EE: environ-
mental efficiency; CE: cost efficiency; HFC: high-forage control; HFS: high-forage select; LFC: low-forage control; 
LFS: low-forage select; yellow dot: mean efficiency; red: mean efficiency + 1 standard deviation; green: mean effi-
ciency – 1 standard deviation 

 
 

More than half the DMUs of systems HFS and LFS were technically and environmentally effi-
cient; while for DMUs of systems HFC and LFC, the number was less than half. The only two 
cost efficient systems were HF, i.e. no LF DMU or any other HF DMU was cost efficient. Never-
theless, 13 out of the 15 most cost efficient DMUs were HF (i.e. 13 out of 14 HF DMUs), while 
the eight most cost efficient DMUs all were HF. 

The non-parametric Spearman’s rho rank correlation coefficient was used to test correlation be-
tween TE, EE and CE (Table 1). TE and EE were strongly correlated, suggesting the hypothesis 
that more technically efficient farms were also more efficient in reducing their wastes. CE and EE 
were modestly correlated, i.e. there was not a clear relationship between cost reduction and re-
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duction of wastes. Notably, correlation between CE with TE was weak. Therefore, DMUs able to 
best minimize their inputs, given their output production, did not always manage to reduce their 
costs to the lowest possible levels, in comparison with their peers. 

 
Table 1: Spearman's rho correlation coefficient to test for correlations between TE, EE and CE. 

Efficiency 
score 

 TE EE CE 

TE  1.000   

EE  0.834 1.000  

CE  0.189 0.415 1.000 

 
The non-parametric Kruskal-Wallis (KW) test was used to test for differences (at 5%) in efficien-
cy scores between the four systems. The test found significant differences between systems for 
CE (K statistic = 17.679) and therefore a post-KW multiple comparison test (Siegel & Castellan, 
1988) was run to determine which systems were different. Significant CE differences were identi-
fied between the following pairs of systems: HFC-LFC (K = 11.786); HFS-LFC (K = 17.357); 
and HFS-LFS (K = 11.929). Box plots (Figure 1c) of the CE scores by system provided a way of 
‘ranking’ the aforementioned significant differences: clearly, the HFC system was better than 
LFC and LFS; and HFS was better than LFS. These results suggested that HF systems were sig-
nificantly more cost efficient than LF; this could be one reason for the observed weak correlation 
between TE and CE. 

Using the optimal slacks calculated by the SBM models for TE and EE, mean input and undesir-
able output slacks were expressed as percentages of input and undesirable output levels respec-
tively (Table 2). 

Table 2: Mean input/undesirable output slacks expressed as percentages of input/undesirable output levels 

 
% of input levels 

% of undesirable output 
levels 

System Replacements Labour Land 
use 

N fertil-
izer 

Feed GHG N sur-
plus 

P surplus 

HFC 18.2 5.3 26.8 38.2 3.3 14.8 11.4 13.9 

HFS 11.1 7.6 12.7 18.7 0.0 2.4 2.7 0.0 

LFC 14.3 12.5 5.9 12.0 10.8 9.1 10.3 7.2 

LFS 4.9 2.1 4.1 3.1 5.2 2.2 5.3 5.2 

 
HF had by far the largest ratios regarding land use and N fertilizer. Moreover, the KW test indi-
cated significant differences between HFC and LFS regarding the savings potentials of land use 
(K = 8.480) and N fertilizer (K = 9.569), with LFS performing better (Figure 2a-b). HFC and LFC 
had the largest ratios for GHGs, N surplus and P surplus (Table 2). The KW test found significant 
differences (K = 7.934) between HFC and HFS in terms of GHG savings potentials, with HFS 
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performing better (Figure 2c). Notably, HFS had very small ratios for all three pollutants, with 
the ratio for P surplus (as well as for feed) being equal to zero. While a savings potential equal to 
zero may look odd, it should be remembered that DEA is a relative measure and that this result 
indicates that HFS DMUs performed better than the rest regarding these particular resources. 

Figure 2: Box plots summarizing statistics for land use, N fertilizer, and GHG savings potentials per system. Yellow 
dot: mean efficiency; red: mean efficiency + 1 standard deviation; green: mean efficiency – 1 standard deviation 

 
 
 
Discussion 
 
Comments on our findings 
This study presented a slacks-based DEA framework based on the SBM models of Tone (2001). 
The superiority of SBMs to radial DEA models, the latter having been extensively used in dairy 
farm efficiency assessments, was demonstrated through the measurement of a number of sustain-
ability and resource-use indicators: technical efficiency (TE), environmental efficiency (EE), cost 
efficiency (CE), and input/undesirable output-specific savings potentials. 

This study found that technically efficient farms were also efficient in minimizing their GHG 
emissions and N and P surpluses. This result extends the assumption of Shortall & Barnes (2013) 
that Scottish farms which are technically efficient are also efficient in minimizing their GHG 
emissions. Moreover, an important finding in this study was that technically efficient farms were 
not always economically efficient. As noted above, the results suggested that HF systems were 
clearly superior to LF regarding CE, and this might have been the reason for the weak correlation 
between TE and CE. Nevertheless, the Langhill experimental farm is not a representative sample 
of commercial herds and the calculation of CE was dependent upon proxy estimates of input 
costs. Therefore, it is important to test this finding out on commercial herd data. However, it does 
illustrate that there may be economic/environmental trade-offs between dairy farming systems i.e. 
a ‘win-win’ may not always be possible. 

Calculating input and undesirable output-specific savings potentials allowed for the identification 
of specific aspects in which the systems differ. The facts that LFS were significantly better than 
HFC in terms of land use and N fertilizer saving potentials; and that HF systems had the largest 
savings potentials for these two inputs were unsurprising, as the HF system required more land 
and fertilizer than LF (Toma et al., 2013). These results could have been different had land use 
and fertilizer use for bought-in feed been accounted for. The large pollutant savings potentials of 
C animals, and the significantly better performance of HFS compared to HFC in terms of GHG 
savings potentials, indicated that genetic merit could have differential effects on the systems’ EE. 
This was an important finding, as a recent DEA study on the Langhill herd did not identify any 
genetics × environment interaction regarding EE (Toma et al., 2013). However, Toma et al. 
(2013) used a radial EE model which does not allow for the decomposition of EE into pollutant-
specific efficiencies (i.e. savings potentials). Therefore, this finding also highlighted the useful-
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ness of SBM models in that they are able to provide additional important information about the 
DMUs under study. 

Further steps 
The advantages of the SBM framework could be of value to researchers, policy-makers and, ul-
timately, society. On the one hand, decomposing efficiencies into variable-specific savings poten-
tials offered an in-depth comparison between different dairy farming systems, facilitating dairy 
research. On the other, aggregating variable-specific saving potentials into a single index (i.e. TE 
and EE)- or even aggregating efficiencies (i.e. TE, EE and CE) into an overall index (e.g. 
Despotis, 2005)- can provide important information at the policy-level, as it offers a means of 
calculating overall sustainability scores for different dairy farm types. Moreover, further steps 
could also take into account societal issues such as the interactions between efficiency and animal 
health and welfare (e.g. Barnes et al., 2011 ; Hansson et al., 2011 ; Toma et al., 2013).  The latter 
could be a future step, as could also be the quantification of variability in the long-term perfor-
mance of different systems: under the assumption that farmers are risk-averse, concluding that the 
most efficient system is also the ‘best’ is misleading. It is therefore important to also measure the 
variability of each system in terms of their efficiency scores and savings potentials. Given the 
robustness of the SBM framework in combination with an abundance of resource-use, environ-
mental, and animal health data available in SRUC’s Langhill database, there exist numerous op-
portunities for further research. Importantly, while Langhill was a controlled experiment, many of 
the data capturing technologies that were used to collect information are commercially available 
and increasingly being used by dairy farmers. Therefore, the suggested framework could soon be 
used for commercial dairy farm assessments. 
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